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Abstract

It is well known that the internal friction in a material can have a considerable destabilizing effect on the
stability of non-conservative systems. Apart from the Voigt model, the viscoelastic body model is
sometimes utilized to describe material damping. This relates the stability problem for non-conservative
elastic systems with that for viscoelastic system. The Bubnov–Galerkin method is usually applied for
solving the problems. In this case, the displacement functions are represented by series in terms of natural
vibration modes jiðxÞ of the elastic system. To provide a high degree of accuracy for the solution, one
should involve a fairly large number of modes. For a viscoelastic plate, the number of terms to be kept in
the expansion of the deflection can be substantially more. One should bear in mind, however, that as the
number of modes preserved in the expansion increases, the influence of shear strains and rotational inertia
on the behavior of the solution becomes more pronounced. In view of this, it is important to study the
stability of non-conservative viscoelastic systems with the shear strain and rotational inertia being taken
into account. In the present paper this problem is solved for a viscoelastic plate in a supersonic gas flow.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the internal friction in a material can have a considerable destabilizing
effect on the stability of non-conservative systems. This fact was first mentioned by Ziegler [1] and
later in many other works [2–7]. Apart from the Voigt model, the viscoelastic body model is
sometimes utilized to describe material damping [3,8–10]. This relates the stability problem for
non-conservative elastic systems with that for viscoelastic systems [10–12]. The Bubnov–Galerkin
method is usually applied for solving the problems. In this case, the displacement functions are
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represented by series in terms of natural vibration modes jiðxÞ of the elastic system. For the
qualitative analysis in the indicated expansion usually only the first two forms are considered.
However, to provide a high degree of accuracy for the solution, one should involve a fairly large
number of modes. For example, in the problem of the stability of an elastic plate in a gas flow not
less than four terms must be taken into account in the expansion of the plate deflection [13,14].
For a viscoelastic plate, the number of terms to be kept in the expansion of the deflection can be
substantially more [10,12]. One should bear in mind, however that as the number of modes
preserved in the expansion increases, the influence of shear strains and rotational inertia on the
behavior of the solution becomes more pronounced [15]. In view of this, it is important to study
the stability of non-conservative viscoelastic systems with the shear strain and rotational inertia
being taken into account. In the present paper this problem is solved for a viscoelastic plate in a
supersonic gas flow.

2. The statement of the problem

Consider an infinitely long viscoelastic plate with freely supported longer edges exposed to a
supersonic gas flow with a constant velocity v (Fig. 1). The plate is subjected to a load in the plane
of the plate. The load qðtÞ; which is uniformly distributed along the movable edge, is applied in the
middle plane of the plate. Restricting the consideration to the case of cylindrical bending, it is
assumed that the plate deflection w is a function of the single space co-ordinate x and time t; i.e.,
w ¼ wðt; xÞ:
By considering shear strains the Timoshenko hypothesis will be used. In accordance with this the

angle, formed by a tangent to the middle surface of the plate with the axis x; is defined by the sum

@w=@x ¼ cþ y: ð1Þ

The rotation angle c is stipulated by bending of the plate and is connected with the bending
moment Mx by the relation

Mx ¼ �Dð1� RÞ@c=@x: ð2Þ
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Fig. 1. The plate in a gas flow.
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Here D ¼ Ed3=½12ð1� m2Þ� is the cylindrical stiffness of the plate, E; m are the elasticity modulus
and the Poisson ratio of the plate material, d is the plate thickness, R is the relaxation operator of
the material

R
@c
@x

¼
Z t

0

Rðt � tÞ
@cðt;xÞ

@x
dt;

0p
Z

N

0

RðtÞ dtp1; RðtÞX0:

The angle y is defined by the shear strain and is bound with the transverse force Qx by the equality

Qx ¼ k0dGð1� BÞy; ð3Þ

where G is the shear modulus, k0 is the numerical coefficient, considering the transverse shear, B is
the operator of the shear relaxation,

By ¼
Z t

0

Bðt � tÞyðtÞ dt;

0p
Z

N

0

BðtÞ dtp1; BðtÞX0:

Using the equilibrium equations and Eq. (1) gives the equations of motion of the plate, taking into
account the rotational inertia, transverse shear strains and external damping as

Dð1� RÞ
@2c
@x2

þ k0dGð1� BÞ
@w

@x
� c

� �
� rJ

@2c
@t2

¼ 0;

rd
@2w

@t2
þ k�rd

@w

@t
� k0dGð1� BÞ

@2w

@x2
�

@c
@x

� �
þ Nx

@2w

@x2
þ q ¼ 0: ð4Þ

Here r is the density of the plate material, q is the aerodynamic load, defined by the piston theory

q ¼
pNV

M
V

@w

@x
þ

@w

@t

� �
;

where M is the Mach constant and pN is the pressure in the unperturbed gas flow.
The terms

�rJ @2c=@t2; � rd @2w=@t2; � k�rd @w=@t

determine, respectively, the magnitude of the rotation inertia loads, the transverse inertia load and
the damping load, and Nx is the intensity of forces, acting in the middle surface of the plate.
The solution of equations (4) must satisfy boundary conditions: at x ¼ 0 and x ¼ l; w ¼

0; Mx ¼ 0 or @c=@x ¼ 0 and initial conditions at t ¼ 0; wð0Þ ¼ woðxÞ; @w=@t ¼ vo; cð0Þ ¼
co; @c=@t ¼ uoðxÞ:
An approximate solution of equations (4) is sought in the form

wðt;xÞ ¼
Xn

i¼1

fiðtÞ sin
ip
l

x; cðt; xÞ ¼
Xn

i¼1

jiðtÞ cos
ip
l

x; ð5Þ

where fiðtÞ; jiðtÞ are unknown functions of time.
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To obtain the functions fiðtÞ; jiðtÞ the Bubnov–Galerkin–Kantorovich method will be used.
Substituting expressions (5) into Eq. (4), multiplying the first of them by cosðip=lÞx; the second

by sinðip=lÞx and integrating with respect to x on the interval ½0; l�; gives as the final result

.ji þ
D

rJ

i2p2

l2
ð1� RÞji � k0 dG

rJ
ð1� BÞ

ip
l

fi � ji

� �
¼ 0;

.fi þ k� ’fi þ k0 ip
rl

Gð1� BÞ
ip
l

fi � ji

� �

�
i2p2

l2
Nx

rd
fi þ

pNV

rdM
’fi þ

4pNV2

Mlrd

Xn

j¼1

bijfj ¼ 0: ð6Þ

Here the dot denotes the derivative with respect to time t;

bij ¼
1
2

ij
i2�j2

½1� ð�1Þiþj�; iaj;

0; i ¼ j:

(

Now by introducing the dimensionless time t1 ¼ o1t; where o1 is the minimum frequency of
proper transverse oscillations of the isotropic elastic plate,

o1 ¼ ðp4DÞ=ðrdl4Þ:

Then Eq. (6) can be rewritten in the dimensionless form (for further convenience the derivative
with respect to t1 is denoted again by the dot)

.ji þ i2bð1� RÞji � ð1� m2Þk0 G

E
b2ð1� BÞ

ipd
l

ci � ji

� �
¼ 0;

.ci þ 2e’ci þ ð1� m2Þk0 G

E
b

il

pd
ð1� BÞ

ipd
l

ci � ji

� �
� i2aci þ n

Xn

i¼1

bijcj ¼ 0; ð7Þ

where

ci ¼ fi=d; b ¼ 12l2=ðp2d2Þ; a ¼ Nxl2=ðp2DÞ;

2e ¼ k�=o1 þ pNV=ðro1dMÞ; n ¼ 4pNV2=ðrdlMo2
1Þ:

The solution of equations (7) must satisfy to initial conditions

cið0Þ ¼
2

dl

Z l

0

woðxÞ sin
ip
l

x dx; jið0Þ ¼
2

l

Z l

0

coðxÞ cos
ip
l

x dx;

’cið0Þ ¼
2

dl

Z i

0

voðxÞ sin
ip
l

x dx; ’jið0Þ ¼
2

l

Z l

o

uoðxÞ cos
ip
l

x dx:

Neglecting rotary inertia, the first equation of Eq. (6), becomes

i2p2

l2
Dð1� RÞji � k0dGð1� BÞ

ip
l

fi � ji

� �
¼ 0:
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From this equation the difference ððip=lÞfi � jiÞ can be expressed as

ip
l

fi � ji ¼ ð1� RÞ þ
k0dGl2

i2p2D
ð1� BÞ

� ��1
ð1� BÞ

ip
l

fi:

Substituting this expression into the second equation of system (6) gives

ð1� BÞ�1 .fi þ k� þ
pNV

rdM

� �
’fi �

i2p2

l2
Nx

rd
fi þ

4pNV2

Mldr

Xn

j¼1

bijfi

" #

þ k0 i2p2

rl2
G ð1� RÞ þ k0 dGl2

i2p2D
ð1� BÞ

� ��1
ð1� RÞfi ¼ 0: ð8Þ

Now multiply Eq. (8) from the left with ½ð1� RÞ þ k0dGl2=ði2p2DÞð1� BÞ� and further with
ð1� RÞ�1: Then

ð1� BÞ�1 þ k0 Gdl2

i2p2D
ð1� RÞ�1

� �

	 .fi þ k� þ
pNV

rdM

� �
’fi �

i2p2

l2
Nx

rd
fi þ

4pNV2

Mldr

Xn

j¼1

bijfi

" #
þ k0 i2p2

rl2
Gfi ¼ 0:

Solving this equation with respect to .fi gives

.fi þ k� þ
pNV

rdM

� �
’fi �

i2p2

l2
Nx

rd
fi þ

4pNV2

Mlrd

Xn

j¼1

bijfj

þ ð1� BÞ�1 þ k0 Gdl2

i2p2D
ð1� RÞ�1

� ��1
k0 i2p2

rl2
Gfi ¼ 0: ð9Þ

Using the previous dimensionless values, Eq. (9) can be rewritten in the form

.ci þ 2e’ci � i2aci þ n
Xn

j¼1

bijcj þ ½ð1� R�1Þ þ að1� BÞ�1��1i4ci ¼ 0; ð10Þ

where

a ¼ ði2=bÞ E=ðk0ð1� m2ÞGÞ:

The operators ð1� RÞ�1 ð1� BÞ�1 are operators of the tension–compression ð1þ KÞ and shear
ð1þUÞ creep, respectively.
Then

.ci þ 2e’ci � i2aci þ n
Xn

j¼1

bijcj þ ½ð1þ KÞ þ að1þUÞ��1i4ci ¼ 0: ð11Þ

The integral operator ½ð1þ KÞ þ að1þUÞ��1 can be represented in the following way:

½ð1þ KÞ þ að1þUÞ��1 ¼
1

1þ a
1þ

1

1þ a
ðKþ aUÞ

� ��1
¼

1

1þ a
ð1� R�Þ;
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moreover

R� ¼
1

1þ a
ðKþ aUÞ 1þ

1

1þ a
ðKþ aUÞ

� ��1
:

The kernel of the operator R� is the resolvent for the kernel of the operator 1=ð1þ aÞðKþ aUÞ
and it can be obtained with help of the Laplace transformation. Finally Eq. (11) can be written in
the form

.ci þ 2e’ci � i2aci þ n
Xn

j¼1

bijcj þ
i4

1þ a
ð1� R�Þci ¼ 0: ð12Þ

3. The stability of the equilibrium state of the plate

For the stability of the zero solution of equations (7) or (11) one can rewrite them transfering
the lower limit in the integrals to �N: In such a case the solution, for instance, of Eqs. (7) can be
sought as the products

jiðtÞ ¼ aie
i�ot; ciðtÞ ¼ bie

i�ot: ð13Þ

Here ai; bi are constants, o is the frequency and i� ¼
ffiffiffiffiffiffiffi
�1

p
:

In this connection the integral term Rji assumes the formZ t

�N

Rðt � tÞjiðtÞ dt ¼
Z t

�N

Rðt � tÞei�ot dtai

¼
Z

N

0

Rðt1Þei�oðt�t1Þ dt1ai ¼ ei�ot

Z
N

0

Rðt1Þe�i�ot1 dt1ai:

A similar transformation can be fulfilled with the term Bðipdci=l � jiÞ: After the substitution of
expressions (13) into Eqs. (7) one obtains the system of linear homogeneous algebraic equations

� o2ai þ i2bð1� R�Þai � ð1� m2Þk0 G

E
b2ð1� B�Þ

ip
l

bi � ai

� �
¼ 0;

� o2bi þ 2ei�obi þ ð1� m2Þk02 G

E
b

il

pd
ð1� B�Þ

ipd
l

bi � ai

� �

� i2abi þ n
Xn

j¼1

bijbj ¼ 0; ð14Þ

where

R� ¼
Z

N

0

Rðt1Þe�i�ot1 dt1; B� ¼
Z

N

0

Bðt1Þe�i�ot1 dt1:

The value of o is found as a root of the equality

jAj ¼ 0:

Here jAj is the determinant of the matrix of coefficients of equations (14).
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The critical value, for example, of the parameter a is found from the condition that the real part
of o is equal to zero. However, the finding of complex-valued roots of the transcendental equation
is not an easy problem. Therefore for the investigation of the stability of the momentless
equilibrium state of the plate the method of the top Lyapunov exponent is applied, which is
defined by the expression

l ¼ lim
t-N

ðjjYðtÞjj=jjYð0ÞjjÞ;

where jjYðtÞjj; jjYð0Þjj are norms of solutions of equations (7) in Euclidean space for instants t and
t ¼ 0:
If lo0; then the equilibrium state of the plate is asymptotically stable in Lyapunov sense, and

vice versa, if l > 0; then the equilibrium state is unstable. For the calculation of the top Lyapunov
exponent in that case, if Eqs. (7) are differential (at R ¼ 0; B ¼ 0) or are reduced to them (as, for
example, in a case of degenerate kernels of integral operators R; B), one can use the numerical
method, proposed in Ref. [16]. If integro-differential equations (7) cannot be reduced to
differential equations, then for the calculation of l; the method described in Ref. [17], can be
applied.

4. Example

By way of an example consider a plate, the relaxation kernels of the material of which are
Rðt � tÞ; Bðt � tÞ having forms

Rðt � tÞ ¼ wLe�wðt�tÞ; Bðt � tÞ ¼ ZHe�Zðy�tÞ; ð15Þ

where R; B are measures of the axial and the shear relaxation, respectively, 0pLp1; 0pHp1; w;
Z are parameters, characterizing the time of the relaxation.
For similar relaxation kernels integro-differential equations (7) can be reduced to the system of

differential equations. With this purpose one can use new unknowns

zi ¼ Rji; xi ¼ Bððipd=lÞci � jiÞ:

These integral relations are equivalent to differential equalities

’zi ¼ wðLji � ziÞ; ’xi ¼ Z½Hððipd=lÞci � jiÞ � xi�

with initial conditions zið0Þ ¼ 0; xið0Þ ¼ 0:
Further the Poisson coefficient m and the dimensionless value ð1� m2Þk0G=E are assumed,

respectively, equal to 0.15 and 0.2, and the ratio ð1� m2Þl=ðpdÞ to 5. Critical values of the
parameter acr obtained with help of Eqs. (7) for the elastic plate depending on the parameter n and
on the number of terms in the expansion of the plate deflection are presented in Table 1. The
parameter e is equal to 0.1.
In the same table values of the parameter a�; found without considering transverse shear strains

and the rotation inertia, are given.
For the estimation of the effect of shear strains only in the same table quantities of the

parameter ash; which are received from Eqs. (12), are written.
The relation between the parameters ash and n is plotted in Fig. 2 as the solid line. To produce

this curve additional results for interval nAð4; 6Þ were obtained with the step Dn ¼ 0:25: The line is
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obtained for the parameter, characterizing the external and aerodynamical damping, e equal to
0.1. It is interesting, that at e ¼ 0:05 the similar curve coincides with the same solid line. The
plotted curve is the boundary between regions of stable and unstable states of the plate. The form
of the dependence a�Bn is well known from many works [2,12,14]. One can see that taking into
account shear strains does not lead to principal changes in this form.
The comparison of values acr and ash shows that at chosen input data the rotation inertia does

not render practically any influence on the magnitude of the critical parameter a: From another
side it is obvious that taking into account shear strains leads to corrections in the magnitude of the
critical parameter, the value of which increases with the increase of the parameter n: If at n ¼ 0 the
difference between related values acr and a� achieves only 2%, then at n ¼ 6 it is already more
than 10%.
Simultaneously presented results demonstrate, that for obtaining sufficiently exact results at

assumed input data in the expansion of the deflection, not less than 4 terms must be kept. This fact
is known too from previous works, where the stability of the isotropic plate without taking into
account shear strains was considered. The effect of shear strains and rotational inertia increases
with increasing numbers of sine half-waves in the expansion of the plate deflection. This
circumstance was discussed for bars by Timoshenko [15].
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Table 1

Magnitudes of the critical parameter a for the elastic plate for varying n and the number of terms n in the expansion of

the deflection at e ¼ 0:1

n a� acr ash

n ¼ 2 n ¼ 4 n ¼ 6 n ¼ 2 n ¼ 4 n ¼ 6 n ¼ 2 n ¼ 4 n ¼ 6

0 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.98 0.98

1 1.04 1.04 1.04 1.02 1.02 1.02 1.02 1.02 1.02

2 1.16 1.16 1.16 1.15 1.15 1.15 1.16 1.15 1.16

3 1.38 1.38 1.38 1.41 1.40 1.40 1.41 1.40 1.40

4 1.81 1.77 1.77 2.00 1.91 1.91 2.00 1.90 1.90

5 2.78 3.00 3.01 2.45 2.71 2.71 2.46 2.71 2.72

6 2.34 2.64 2.65 2.01 2.35 2.36 2.02 2.36 2.37

10 0.57 1.28 1.29 0.24 1.03 1.05 0.24 1.05 1.07

Fig. 2. Critical quantity ash versus parameter n for elastic and viscoelastic plates.
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Calculations for other values of input data show, that the minimum necessary number of terms
n can be more than four, where it can be different depending on that fact whether shear strains are
taking into account or not.
For the confirmation of it in Table 2 quantities of parameters acr and a�; found for the

viscoelastic plate with the maximum relaxation measure at the different number of terms in the
expansion of the deflection, are presented. From here it can be seen, that in the isotropic plate it is
enough to consider only the first four terms in the expansion of the deflection. However, if one
considers shear strains too, then not less as 6–8 terms should be taking into account. The
difference in quantities of the critical parameter a; found at n ¼ 2 and 8 proves to be more
essential than for the elastic plate. Simultaneously these data show, that by considering shear
strains and rotational inertia leads to the sharp variation of values of the parameter acr in the
comparison with the value a�; found at the same number of terms in the expansion of the plate
deflection.
For the comparison of relations nBacr for elastic and viscoelastic plates in Fig. 2 the dash line is

built, received at e ¼ 0:05 for the viscoelastic plate with parameters L ¼ H ¼ 0:5 and w ¼ Z ¼ 0:1
and n ¼ 4: These curves show that taking into account the viscous properties of the material can
induce an appreciable change in the magnitude of the critical parameter acr and even in the form
of the curve nBacr:
Data, presented in Tables 3 and 4 make possible to estimate the influence of viscoelastic

characteristics of the material and of the parameter e on the magnitude of the critical parameter a:
From the comparison of results, containing in Table 3, it follows, that at the increase of relaxation
measures of the material L; H in indicated limits the decrease of parameters acr and a�; is
observed, the speed of which increases with the increase of values L; H:
Results, presented in Table 4, show, that the change of the coefficient e and of the parameter w;

defining the relaxation time of the material, can render essential effect on the value of critical
parameter acr: It is especially appreciable in that case, if we consider shear strains and the rotation
inertia.
For the estimation of the effect of shear strains only on critical values of the parameter a for the

viscoelastic plate let us use Eq. (12). Following creep kernels

Kðt � tÞ ¼ gKe�gðt�tÞ and Uðt � tÞ ¼ xPe�xðt�tÞ

correspond to relaxation kernels Rðt � tÞ and Bðt � tÞ (15).
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Table 2

Magnitudes of the critical parameter a for the viscoelastic plate for varying n in the expansion of the deflection at

e ¼ 0:1; L ¼ 1:0; w ¼ 0:01; H ¼ 1:0; Z ¼ 0:01; n ¼ 5:0

n acr a�

2 2.40 2.65

4 0.98 0.18

6 1.03 0.19

8 1.04 0.19
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Here

K ¼
L

1� L
; g ¼

w
1þ K

; P ¼
H

1þ H
; x ¼

Z
1þ P

:

Applying the Laplace transformation the kernel of the operator R is obtained in the form

Rðt � tÞ ¼
d1

1þ a
exp½�p1ðt � tÞ� þ

d2

1þ a
exp½�p2ðt � tÞ�;

where

p1 ¼ ð�b �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
Þ=2; p2 ¼ ð�b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4c

p
Þ=2;

b ¼ gþ xþ ðgK þ axPÞ=ð1þ aÞ; c ¼ gxþ gxðK þ aPÞ=ð1þ aÞ;

d1 ¼ ðA1p1 þ A2Þ=ðp1 � p2Þ; d2 ¼ �ðA1p2 þ A2Þ=ðp1 � p2Þ;

A1 ¼ gK þ axP; A2 ¼ gxðK þ aPÞ:
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Table 3

The dependence of values of the critical parameter a for characteristics of the viscoelasticity at e ¼ 0:1; n ¼ 4 and n ¼ 5

L w H Z acr a� ash

0.25 0.01 0.00 0.00 2.71 2.98 2.71

0.25 0.01 0.25 0.01 2.71 2.98 2.71

0.00 0.00 0.25 0.01 2.71 3.01 2.71

0.5 0.01 0.0 0.00 2.70 2.97 2.70

0.5 0.01 0.5 0.01 2.70 2.97 2.70

0.0 0.00 0.5 0.01 2.71 3.01 2.72

0.75 0.01 0.00 0.00 2.68 2.73 2.68

0.75 0.01 0.75 0.01 2.67 2.73 2.68

0.00 0.00 0.75 0.01 2.71 3.01 2.71

Table 4

The dependence of the critical parameter a for the elastic and viscoelastic plate for magnitudes of parameters e and w at
n ¼ 4 and n ¼ 5

e L w H Z acr a�

0.1 0.5 0.1 0.00 0.00 1.93 2.97

0.5 0.01 2.70 2.97

0.5 0.001 2.71 3.00

0.0 0.00 2.71 3.01

0.05 0.5 0.01 0.0 0.00 2.58 2.64

0.5 0.01 0.5 0.01 1.58 —

0.0 0.00 0.5 0.01 2.67 —

V.D. Potapov / Journal of Sound and Vibration 276 (2004) 615–626624



From the solution of the integro-differential equation (12) the magnitude of values ash were
obtained, which are presented in the Table 3.
Comparison of acr and ash shows that the rotational inertia virtual does not influence the

stability of the viscoelastic plate, as was previously the case for an elastic plate, at least for the
considered input data.

5. Conclusion

In the work on the example of the plate, moving in the gas flow, the effect of shear strains and
the rotational inertia on the values of critical parameters in elastic and viscoelastic non-
conservative systems has been investigated. It has been shown, when considering the indicated
factors, particularly shear strains, they can have an essential influence on the stability of similar
systems, moreover this influence is especially appreciable in viscoelastic systems. The difference in
values of critical parameters, found with and without taking into account shear strains, can
produce errors of not several percents but several decades percents.
For the investigation of the stability of the zero solution of integro-differential equations, with

help of which the behavior of the viscoelastic plate has been described, the method of the top
Lyapunov exponent is used. For its calculation the procedure, suggested in Ref. [16] for a system
of differential equations and generalized in Ref. [17] for the case of integro-differential equations,
is applied. Considered examples show the high efficiency of the proposed method.
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